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Roundoff  Noise  Analysis for  Digital  Signal  Power 
Processors  Using  Welch’s  Power  Spectrum 

Estimation 
CHONG-YUNG CHI, DAVID LONG, AND FUK-KWOK LI 

Abstract-In this paper, we present an analysis for the noise due to 
finite word length effects for digital signal power processors using 
Welch’s power spectrum estimation technique to measure the power of 
Gaussian random signals over a frequency band of interest. The input 
of the digital signal processor contains a finite-length time interval in 
which the true Gaussian signal is contaminated by Gaussian noise. We 
analytically derive the roundoff noise-to-signal ratio in the measure- 
ment  of  the signal power. We also present computer simulations which 
validate the analytical results. These results can be used  in tradeoff 
studies of hardware design such as number of bits required at each 
processing stage. The results presented in this paper are currently being 
used  in the design of a digital Doppler processor [l], [2] for a radar 
scatterometer [3]-[SI. 

I. INTRODUCTION 

I N  Chi,  Long, and Li [ 11, we presented a statistical anal- 
ysis for  the accuracies in the radar backscatter measure- 

ments for  the NASA Scatterometer (NSCAT) which uti- 
lizes  a digital Doppler processor (DDP).  The reader is 
referred to [1] for  details of the  DDP design and general 
features associated with NSCAT. Briefly, the DDP is a 
fast Fourier transform (FFT)-based digital signal proces- 
sor that performs a Welch’s power spectrum estimation 
on  the radar return signal (see  Fig. 1). 

We would like to present the DDP in a more general 
manner such that its application is not limited to the radar 
area. Therefore, we will refer to it as  a digital signal power 
processor (DSPP) instead.  In [ 11, the normalized standard 
deviation of the measurements by the  DSPP (the so-called 
Kp parameter) was derived. However, that derivation as- 
sumed that  the roundoff noise of the  DSPP was negligible. 
In practical design, roundoff noise  is  always present and 
can potentially contaminate the true signal power mea- 
surements. In this  paper,  a roundoff noise analysis of the 
DSPP is presented. The derived analytical results have 
been used in tradeoff studies of hardware design such as 
the number of bits required at  each  stage of processing to 
keep the roundoff noise-to-signal ratio satisfactorily low. 
Although this derivation was motivated by radar system 
design,  we believe the approach and the results will be 
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Fig. 1 .  Signal  processing  system for  a digital  signal  power  processor 

(DSPP)  using  Welch’s  power  spectrum  estimation. 

helpful in the design of other digital signal processors for 
estimating the power of random signals. 

In Section 11, the  DSPP based on  the Welch’s power 
spectrum estimation and  the associated equation for eval- 
uating Kp are summarized. The roundoff noise model that 
we have used for  the  DSPP is presented in Section 111. 
The roundoff noise-to-signal ratio is derived in Section 
IV, and some computer simulations to validate our theo- 
retical results are shown in Section V. We discuss how to 
use the derived results in the design of the  DSPP and draw 
some conclusions in Section VI. 

11. A  DSPP BASED ON WELCH’S POWER SPECTRUM 
ESTIMATION 

The DSPP is designed to compute an unbiased estimate 
of the signal power  over a frequency band of interest. Es- 
sentially,  the signal processing procedure employed in the 
DSPP consists of power spectrum density (psd) estima- 
tion and signal power computation. The  DSPP based on 
Welch’s power spectrum estimation is shown in Fig. 1 .  It 
consists of a) computation of  the FFT, b) application of 
a window by convolution, c) squaring for  power detec- 
tion, and d) computation of the signal power. The input 
of the DSPP consists of a finite-time-length signal is con- 
taminated by noise. The Welch’s power spectrum esti- 
mate of the input is first determined,  and then the signal- 
plus-noise power is obtained by summing the estimated 
periodogram over  the desired frequency range. Simi- 
larly,  an estimate of the noise-only power  is computed. The 
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final estimate of the signal power  is obtained by linearly 
combining these two  measurements. 

Assume  that  we  are  given Nps independent signal-plus- 
noise pulses and NpN noise-only pulses. For  each inde- 
pendent pulse, we  assume the following. 

(Al) For  the noise-only case, the input signal x ( t )  
consists of the thermal noise n ( t )  which is assumed  to be 
zero-mean  Gaussian  with psd 

P N ( ~ )  = b' for I f (  < 5 fs 
( 1 )  

wherefs  is  the  Nyquist  sampling frequency. For the sig- 
nal-plus-noise case, x ( t )  consists of  not  only n ( t )  but also 
the true return signal s ( t )  which  is  assumed  to  zero-mean 
Gaussian  with  psd 

P s ( f )  = - for fL I f s  fL + Bs =fH ( 2 )  

where 2PR is  the signal power of s ( t )  over  the  frequency 
range ( h, fH ) because Ps ( f ) is a real even  nonnegative 
function off. Notice that the  psd of s ( t )  outside the in- 
terval ( fL, fH) is not defined explicitly since  we  are not 
interested in that region. Also note, from  Fig. 1 , that the 
true signal pulse s ( t )  may be shorter than the input x ( t ) .  
In [l], we  developed  an  unbiased estimate pR of PR based 
on the assumption (Al) and  the additional assumption 

(A2)  The window spectrum Ws ( k )  is very  narrow. By 
simply  extending  the result in [ l ]  for multiple indepen- 
dent measurement pulses, the unbiased estimate PR is 
given by 

PR 
BS 

where 

and 

NPN KN knN 

where * indicates circular convolution, and C 1  is associ- 
ated with the power of the signal-plus-noise case, and C2 
is associated with the power of the noise-only case. All 
the parameters in (3), (4), and ( 5 )  are described in Table 
I (also see [l]). Note that XI" ( k )  in (4) indicates the 
Fourier transform of the ith data segment x I j )  ( n )  asso- 
ciated with  the jth pulse  for  the signal-plus-noise case. 
X $ j )  ( k )  in (5 )  is  then associated with  the noise-only case. 
The ith case segment associated with  an input digital sig- 
nal x ( n  is defined as 

TABLE I 
Kp PARAMETERS 

Description 

Time interval  of one  data  segment 
Bandwidth 
Lower frequency bin number 
Upper frequency bin  number 
kns - kLs + 1, knN - k m  + 1 
Window function  (in  time  domain) 
us = r M p f - 1  "=o ws(n) ,  2 UN + wk(n) 

Number of measurement pulses 
Number of data  segments 
Number of data  points per segment TGS/T,TGN/T 
Number of  nonoverlapping  data  points in consecutive 
data  segments 
Sampling interval = l/fs 
Signal start  time 
Signal pulse  length 
Signal-tc-Noise ratio=P,/(Bsb') 
Fourier transform of ws(n)ws(n + qD) 
Fourier transform of W N ( ~ ) V J N ( ~  + qD) 

rect(nT + (i - l ) D T  - Tl )ws (n) ,  if 0 5 n 5 M - 1 ;  
IO, otherwise 
7i(n)7j(n + (i - j ) D )  
Fourier transform of ri,(n) 

h x%1 73n)  
& CF1 Vi 
{ l :  O S t 5 T s ;  

0 otherwise 

x ( n  + ( i  - 1)D) ,  i f 0  I n 5 M - 1; 
x i ( n )  = 

otherwise. 

(6) 
Throughout this paper  we  use X (  k) to denote  the  Fourier 
transform of x ( n ) .  The  normalized standard deviation Kp 
of pR is defined as 

{ ~ a r  [ p R ]  
Kp = 

PR 
which has been  shown in [ l ]  to  be 

2 

where all the  parameters are described in Table I. 
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Fig. 2. A realization of the DSPP using  Welch's  power  spectrum  estima- 
tion. 

A practical consideration in  the implementation of a 
digital signal processor is the limitation in the word length 
at each stage of processing. The power of  roundoff noise 
in  the  output  due  to finite word length effects depends on 
the realization of the digital signal processor.  The reali- 
zation will be driven by the dynamic range at each stage, 
computation speed limitations,  etc.  For  example,  the  de- 
sign of the DDP in NSCAT requires that the digital pro- 
cessor have  a dynamic range to process input signal with 
the SNR range from -20 dB to +26 dB.  The SNR range 
in the input signal determines the dynamic range at each 
stage of the digital processor, and hence,  the number of 
bits at each stage to prevent overflow. In  order to mini- 
mize the number of bits at each stage, some of the least 
significant bits would have to be discarded between stages. 
The roundoff noise accumulated in  the output will in- 
crease  as  a  function of the discarded bits. 

Another practical consideration is the use of fixed-point 
arithmetic. When all processing is  done with fixed-point 
arithmetic, bit-shifting may be performed at each stage to 
keep the digital number within a  proper dynamic range 
such that overflow and underflow are minimized. One bit 
shifted to  the  left is equivalent to multiplication by 2. One 
bit shifted to the right is equivalent to multiplication by 
1 / 2  or  the truncation of a least significant bit. During 
computation of the  FFT with radix 2 which is used in  the 
presented DSPP in this paper,  a bit-shift right before each 
stage of the  FFT may be performed in order to prevent 
FFT overflow. Thus,  the  scale  factor 1 / M  will be in- 
cluded within FFT. Also,  other artificial scale  factors may 
be introduced to avoid overflow or  to simplify the hard- 
ware design. 

In implementing the DSPP,  a number of digital signal 
processing techniques can be used to minimize the num- 
ber of arithmetic operations. For  example, when comput- 

ing FFT's of real signals we can perform two FFT com- 
putations simultaneously as follows. The  Fourier 
transforms X1 ( k )  and X ,  ( k )  of two real signals x1 ( n )  and 
x2(n) can be obtained by 

X , ( k )  = - [Re [ F ( k ) ]  + Re [ F ( M  - k ) ] }  
1 
2 

+ (Im [ F ( k ) ]  - Im [ F ( M  - k ) ] }  ( 8 )  
2 

and 

x 2 ( k )  = - {lm [ ~ ( k ) ]  + Im [ F ( M  - k ) ] }  
1 
2 

+ [Re [ F ( M  - k ) ]  - Re [ F ( k ) ] }  (9) 

where M is  the number of the FFT points and F (  k )  is the 
Fourier transform of the complex signal 

2 

f ( 4  = x d n )  + j X 2 W .  (10) 

We refer to the execution of (8) and (9) as  FFT decom- 
position. 

With the above considerations,  a schematic diagram of 
DSPP signal flow is shown in Fig. 2. The scale factor 
Zbl/  C, is chosen such  that overflow probability is small 
during A/D conversion where bl is the number of the bits 
of the A/D excluding the sign bit and C, is  the clipping 
level of the A/D.  The  output of the  A/D is left-shifted b 
bits to become the input of the  FFT. Let b2 be the number 
of bits of FFT. Then bl + b must be no more than b2 to 
prevent overffow in  the input of the FFT. As previously 
mentioned,  a  scale  factor 1 / M  will be used within the 
FFT  for preventing FFT overflow. The  scale factors Zd' 
and 2dz are used for simplifying the complexity of the FFT 
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decomposition  and  the  window  weight setting. The I least 
significant bits of the periodogram are dropped prior to 
the final triple summation in order  to  minimize  the num- 
ber of bits in the output of the triple summation. Only a 
fixed number of bits of the output of the triple summation 
are kept by dropping “a” bits. Of course, all the scale 
factors must  be  compensated  for  when  computing pR. 
Note that the compensation  factor 

A = ~:21-2b1-2b-2d1-2d2 (11) 
is used in the computation of j R  (see  Fig.  2). 

In this paper,  we  assume that the  dynamic  range in each 
stage is large  enough  such that the  overflow  is negligible. 
Fixed-point arithmetic is  assumed. 

111. ROUNDOFF NOISE MODELING  ASSUMPTIONS 

Quantization errors  occur  when  an  analog signal is con- 
verted to a digital representation with a fixed  word length. 
Errors will also  be generated during arithmetic operations 
on finite-length digital numbers.  Right bit-shifting oper- 
ations,  which  are equivalent to truncation, can  also result 
in errors.  We  have called all these errors roundoff noise. 
For fixed-point arithmetic,  only multiplication of two dig- 
ital numbers  and truncation of the least significant bits 
produce  errors. The roundoff noise due  to multiplication 
operation can  be eliminated at the expense of increasing 
the word length after multiplication. 

In this paper  we  assume the signal path from the A/D 
input to  the output of the triple summation  is  implemented 
by a special-purpose digital processor. In  NSCAT, this 
processor will be  on  board a spacecraft. The roundoff 
noise generated in this processor must  be  accounted  for in 
the design when  determining processor performance. 
However, roundoff noise generated in the signal process- 
ing after the triple  summation  is  assumed negligible. For 
NSCAT, this processing will be  performed  on  ground. 

In Fig.  3, we  show  the roundoff noise sources occurring 
in the model  shown in Fig.  2,  el and e; are generated by 
the A/D conversion. No  error  is generated by the scale 
factor 2b (left bit-shift by b bits). e2 and e4 are generated 
by the FFT computation. e3 and e; are generated by the 
decomposition of the FFT output. e4 and e4 are  generated 
by windowing. e5 and e; are generated by the squaring 
operation. e6 is generated by the  presummation  scale fac- 
tor (truncation of 1 least significant bits). e7  is generated 
by the postsummation scale factor (truncation of “a” least 
significant bits). Notice that e2 and e;, generated during 
FFT computation,  and e4 and e;, generated in performing 
convolution, consist of  many arithmetic steps. 

In  Fig.  3,  we  denote  the actual digital signal at  each 
stage by yi ( k )  or yf ( k ) .  Let & ( k )  andff ( k )  denote the 
ideal digital signals associated with yi ( k )  and yf ( k ) ,  re- 
spectively. The resulting roundoff noise, hi ( k )  or hf ( k ) ,  
propagated  from  the previous stages,  is then 

hi ( k )  = Yi ( k )  - & ( k )  ( 1 2 4  

or 

e’.+kl  eg44(kl  e;lk, 

Fig. 3. Roundoff error sources  in  the DSPP shown in Fig. 2. In the  triple 
summation, N p  = Nps. K, = Ks, kh = kHs, and kt = kLs for the  signal- 
plus-noise case; N p  = NpN,  K, = KN,  kh = kHN, and k, = kLN for the 
noise-only case. 

hf ( k )  = yf ( k )  - fi‘ ( k ) .  (12b) 

We  can easily eliminate some noise sources by the  ap- 
propriate choice of scale factors. We  make e3 = e; = 0 
by choosing dl = 1 [see (8) and (9)]. We  can  make e5 = 
e; = 0 by increasing the word length of the output of the 
squaring operation. 

We now make the following assumptions  about all the 
roundoff noises. 

(A3) e3 = 0, e; = 0, e5 = 0, and e; = 0. 
(A4) All the noise sources are  independent of one an- 

other and are independent of the signal. 
(A5) The accumulated roundoff noises h4 ( k )  and hi ( k )  

at the input to the squaring operation are  Gaussian. 
Assumption  (A4)  is generally used in the roundoff noise 

analysis of digital signal processors. Assumption  (A5)  is 
made  to simplify the following derivation. From  Fig. 3, 
one  can easily see that all signal processing procedures 
are  linear  except  for  the squaring operation. The deriva- 
tion of second-order statistics of the output of the squaring 
block requires fourth-order statistics of its input. This will 
make the derivation extremely difficult without the last 
assumption. We  also note that by the central-limit theo- 
rem, the last  assumption is reasonable. 

IV. ROUNDOFF  NOISE-TO-SIGNAL RATIO V 
From  Fig. 3, we  can  see that the signal processing pro- 

cedure  from  the input to y4 ( k )  or y4 ( k )  ’ is  linear  and that 
the signal processing procedure after y5 ( k )  or y5  ( k )  ‘ is 
also linear. The  only nonlinear operation is the square 
which  makes  the roundoff noise h5 ( k )  accumulated in 
y5 ( k )  correlated to the true  signal.  Therefore, h5 ( k )  is 
correlated between different data segments  because  the 
true signals in y5 ( k )  are correlated with one another due 
to the  time overlapping processing of the input signal. So 
is hi ( k ) .  For notational simplicity, we neglect the indexes 
associated with the data segment  number  for  the signal 
path from the input through y4 ( k ) .  From y5  ( k )  on  we will 
attach the data segment  number  -to  all the quantities by a 
superscript ( i ). 
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The derivation for  the roundoff noise-to-signal ratio 
consists of the following 5-step procedure: 

Step A: mean and  covariance function of h4 ( k )  and 

Step  B: mean and covariance  function of h5 ( k )  and 

Step C: mean and  variance of h7; 
Step D: mean and variance of roundoff noise in pR; and 
Step E: roundoff noise-to-signal ratio I/. 

This  5-step derivation procedure provides a set of equa- 
tions.  These equations have  to  be sequentially computed 
to obtain I/. In each step we present the  derivations and 
results as concisely as possible with detailed proofs shown 
in Appendix A. The following derivation is  for  the signal- 
plus-noise case. Results for  the noise-only case can be 
similarly obtained.  We use mi and o? to denote the mean 
and variance of ei , respectively. Note that ei and ef have 
the  same mean and  variance. Let q5i ( k )  and 4; ( k )  be  the 
covariance function of hi ( k )  and hf ( k ) ,  respectively. 

Step A:  Mean  and  covariance function of h4 ( k )  and 

From  Fig. 3 ,  

h 2 ( k )  = - C (e l (n)  + j e ; ( n > )  exp { - j 2 ~ n k / ~ )  

hi(k); 

h; ( k ) ;  

h i ( k ) .  

2b M - 1  

M n = O  

+ ( 4 4  + j e ; ( . ) ) .  (13) 

Based on  our assumptions, it can be easily shown that 

E (Re  [ h 2 ( k ) ] )  = E(Im [ h 2 ( k ) ] }  = 2brn16(k) + m2 

(14) 

where 6 ( k )  is the unit sample  sequence, and that Re 
[ h2 ( k )  ] and Im [ h2 ( k )  ]  are uncorrelated with each other 
and both are white processes with variance 02/2  where 

22b t 1 

o2 = Var [ h 2 ( k ) ]  = M a: + 2a i .  (15) 

Because 

The windowing output h4 ( k )  is 

h4(k)  = h3 ( k )  * 2d’W, ( k )  

From (14),  (17a),  (18),  and (19), 

and 

where 

Similarly, one can show that 

E [ h i ( k ) ]  = m4, ( 2 3 )  

4 m  = 4 4 w .  ( 2 4 )  

and 

Note, from (20) and (23) ,  that E [ h4 ( k )  ]  is  a function of 
k but E [  hi ( k ) ]  is not. Also note that h4 ( k )  is uncorre- 
lated with hi ( k )  although they have  the  same covariance 
function. 

Step B: Mean and covariance function of hy)  ( k  j and 
h i ( i ) ( k ) .  

Note that 

h l ” ( k )  = y l ” ( k )  - f $ ) ( k )  

= [ f Y ’ ( k >  + h f ’ ( k ) f  - ( f f ) ( k ) f  

= ( h f ’ ( k ) f  + 2 h f ’ ( k ) f f ’ ( k ) .   ( 2 5 )  

Since E [  f f ’ ( k ) ]  = 0 (see [l]), then 

E [ h g ’ ( k ) ]  = E[h:(k)] = &(o) + E 2 [ h 4 ( k ) ] .  ( 2 6 )  

Note that  the superscript ( i  ) associated with h 4 ( k )  is 
omitted because its mean and covariance are independent 
of data segment index i. Similarly,  we have 

/ ~ $ ( ~ ) ( k )  = ( h i ( ” ) ( k ) f  + 2 h i ( r ’ ( k ) f i ( r ) ( k )  (27) 

and 

E [ h ; “ ) ( k ) ]  = E [ h i 2 ( k ) ]  = + i ( O )  + E 2 [ h i ( k ) ] .  ( 2 8 )  

Next, we derive the covariances Cov { h t ’ ( k l ) ,  h r ) ( k 2 ) } ,  
Cov { h i ( ’ ) ( k 1 ) ,  / ~ ; ( ~ ) ( k ~ ) } ,  and Cov { h f ) ( k l ) ,  
h p ( k 2 ) ] .  

One can easily see that 

COV ( h f ) ( k , ) ,  h p ) ( k 2 ) }  = 0,  i # r, (29) 
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because they are associated with  the different data seg- and 
ments  which are processed separately. Similarly, one  can 

cov { h p ( k 1 ) ,  h5"(k2)} see that 

COV ( h ; ( i ) ( k i ) ,  h i ( r ) ( b ) }  = 0, i # r. (30 

As concluded in the derivation of step A, we  have 

cov { hY)(k1), h;(r'(k2)) = 0. (31 

Equations (29)-(31).imply the following results. 
(Rl) h f ) ( k , )  is  independent of h f ) ( k 2 )  for i  # r.  
(R2j hi"' ( k,  ) is  independent of hi") ( k 2 )  for i # r. 

1 = 4E[hi"'(k1)] E[hg'(k2)]  Gk(k2, k l ) .  (42) 
Next,  we derive Cov { h y ) ( k i ) ,   h Y ' ( k 2 ) }  and  Cov 
{h$ i ) (k l ) ;  h$t ) (k2)} .  

j . Using  the  well-known equation for  the  covariance of x 
and y 2  where x and p are  two joint Gaussian  random vari- 
ables [9] 

cov { x 2 ,  y 2 }  = 2[cov ( x ,  y > ]  
2 

(R3) h f ' ( k , )  is  independent of h;"'(k2). 
These results are obtained because h f ' ( k )  and h i ( i ) ( k )  + 4 cov { x ,  Y }  a x 1  E[Yl (43) 
are  assumed  to  be  Gaussian in assumption (A5). Based on 
assumption (A4) and  the  fact that E [  f f  ' ( k )  ] = 
E [  f J ( i ) ( k ) ]  = 0, one  can easily show that cov ( h:(kl), h:(k2)j 

and  based on  the assumption (A5); we obtain 

+ cov { h p ( k l ) ,  hS"(k2)}  

+ cov { h p ( k l ) ,  h p ( k 2 )  >] 
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Let 

Then 

and 

KS kHS 

h; = h g ) ( k ) .  
i = l  k = k m  

Ks kns 

Ks Ks kHs kHs 

Var [ h ; ]  = c Cov { h $ ) ( k l ) ,  h t 1 ( k 2 ) } .  
i = l  r = l  kl=kLs k = k L s  

Finally, h7 is  the  sum of h;'s associated with Nps inde- 
pendent pulses multiplied by 2-a.  Thus, 

E [ h 7 ]  = 2-"NpsE[h;] + m7 (53 1 
and 

Var [h7] = 2-2aNps (Var [h:]}  + &. (54) 

As a remark, from (25)  and (271, one  can easily show 
that hy)  ( k )  is uncorrelated with the true signal ( ff ) ( k ) ) 2  
and h;("'(k) is uncorrelated with the true signal 
( f;'" ( k ) ) 2 .  Because h is a  linear function of hy) ( k )  and 
h i ( i l ( k ) ,  and the true signal f, is a  linear function of 
( f Y ' ( k ) ) '  and ( f i ( i ) ( k ) ) 2 ,  h7 is uncorrelated withf,. 

Step D: Mean and variance of roundoff noise in pR. 
Let eSN = h for signal-plus-noise case and eN = h for 

the noise-only case. Then the roundoff noise E ,  embedded 
in pR, is given by 

where as and aN are  the values of "a" associated with eSN 
and eN,  respectively. Therefore, 

and 

Step E: Roundoff noise-to-signal ratio V. 

= pR + E .  ( 5 8 )  

We define the roundoff noise-to-signal ratio V as 

Since pR is  an unbiased estimate of PR with mean square 
value 

E [ p g ]  = ( 1  + K j ) P g ,  ( 6 0 )  

substituting (60) into (59) gives 
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Let P A  be the actual measurement of PR, i.e., \ 0, otherwise. 

where 

Kpe can be thought of as  the normalized root mean square 
value due to the effects of roundoff noise. 

V. A DESIGN  EXAMPLE 

In this section, we illustrate the computation of round- 
off noise-to-signal ratio V and compare the theoretical re- 
sults to simulation results using an  example associated 
with the design of the DDP in NSCAT. 

Practical considerations and performance requirements 
dictate the following choice of parameters for  the NSCAT 
DDP design: 

b2 = 16 (bits in FFT), 

dl = 1, 

d2 = 2 ,  

M = N = 512, 

D = M / 2  (i.e., 50 percent overlap), 

2 I kLs I kHs 5 M / 2  - 1 

and ws(n) = w N ( n )  is a Hanning window, i.e., 

~ s ( 1 1 )  = 0.5 - 0.5 COS (2) O s n s M - 1 .  

Ws ( k )  is then 

i ;, k = 0; 
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For this case, e , ( k )  = 0 because  no multiplications are 
needed during windowing. Only left bit-shifting and ad- 
dition are performed.  For  this  example,  some intermedi- 
ate equations in the previous section can  be simplified. In 
Appendix  B,  we  list these intermediate equations and 
briefly discuss the mi and a; to  be used in computing the 
roundoff noise-to-signal ratio V.  

Let X, be  the output signal of the triple summation 
block before truncating “a” bits in Fig. 3. The dynamic 
range of X, for the signal-plus-noise case is much larger 
than that for the noise-only case.  Therefore, it is  judicious 
to  make “a” adaptive. The following approach  for  de- 
terming a is  assumed. 

Let 4 be the number of bits of X,, Le., 

where [ x ] ’  denotes the smallest integer larger thanx.  The 
value a is  determined  as follows: 

where n,,, is  the  maximum  number of bits for y7 after 
“a” bits truncation, and amin is the minimum value of 
“a .  ” Note that “a” is a function of 4.  Let 

One  can  also  show that Var’/2 [X, ] / E  [ X, 3 << 1 /2 ,  
which implies 4 will take  the value q+ with very high 
probability. The value “a” for the theoretical calculation 
is  chosen to be  the  value for 4 = q+ in (66). 

We  performed  computer simulations for this example 
to validate the theoretical results derived in the previous 
section. The realization of the DDP in Fig. 2 with finite 
word length was simulated by a digital computer.  The 
ideal DDP with infinite word length cannot  be simulated 
with a finite-word-length digital computer. Therefore, the 
“pseudoideal” DDP was simulated by a digital computer 
with floating-point arithmetic. Of course,  all the digital 
numbers in the “pseudoideal” DDP  have many more  bits 
than in the realization of the DDP with finite word length. 
We then generated a set of Gaussian  random  sequences  as 
input to the simulated DDP to get as well as  to input 
to a “pseudoideal”  DDP  to get pR. We then computed 
the statistical mean  square value of the roundoff error E = 

- pR, and then use (61) and (62) to calculate the  round- 
off noise-to-signal ratio V. In the following simulations, 
kN = ks = 32, NpN = 4, and n,, = 12. Only the param- 
eters b, bl,  Nps, E ,  and amin were varied. 

Table I1 shows the analytical and simulated results for 
three cases with E = 2, amin = 6. In  the first case, shown 
in Table  II(a),  we  used the parameters Nps = 25, bl = 7, 
and b = 7; and the second case, shown in Table  II(b),  we 
used Nps = 4, b, = 5 ,  and b = 9. For  the third case, 
shown in Table  II(c), we  used Nps = 4, bl = 7, and b = 
7. From  Table 11, we  can  see  that  our predicted results 

TABLE I1 

(a) Nps = 25,  b, = b = 7; (b) Nps = 4, bl = 5 ,  b = 9; (c) NPS = 4, bl 
ANALYTICAL RESULTS AND  SIMULATED RESULTS FOR 1 = 2, Urnin = 6, AND 

= b = 7  

- 
SNR 

Rou 

-20 
-15 
-10 
-5 
0 
5 
10 
15 

(db) 

- 

doff noise-to-sienal  ratio V (Dercent) - ** 
- 
30.4 
30.2 
22.1 
10.8 
4.42 
1.82 
0.88 
0.46 
I 
- 

(e) 
@@ Analytical  results ** Simulation  results 

agree well with our simulation results. Note that V is 
larger for smaller SNR  for all three cases. The results in 
Table  II(a)  are very similar  to those in  Table  II(c).  This 
implies that roundoff noise-to-signal ratio  is not sensitive 
to Nps. The insensitivity to Nps can  also  be directly pre- 
dicted by (54), (57),  (61),  (62), and (7) by noting that the 
numerator  and  the  denominator of (54) have  the  same  or- 
der of Nps. On  the other hand,  the results in Table  II(b), 
which  are  much  larger than those in  Table  II(c),  imply 
that roundoff noise-to-signal ratio is  very sensitive to the 
number of A / D  bits. Note,  from  Table II(b) and  (c), that 
the roundoff noise-to-signal ratio reduction is  about 6 dB 
for a 2 bit increase in the A / D  conversion. In  other  words, 
the roundoff noise-to-signal ratio reduction is  about 3 dB 
per A / D  bit.  This will be considered further  below. 

For the set of cases shown in Table I11 we  used Nps = 
4, bl = b = 7. We show the analytical results for various 
values of 1 and amin. From this table,  it  is  observed that 
the effects  of  roundoff noise are the same  for constant E + 
amin. We  can  see that V increases as 1 increases. This fol- 
lows intuition. 

We  have  observed that the reduction of  roundoff noise- 
to-signal is  about 3 dB per A / D  bit in Table II(b) and 
(c). We now consider additional analytical predictions 
for this case.  The roundoff noise-to-signal ratios for bl = 
4, 5, 6,  7, 8, and 9 are  shown in Table  IV.  The 3 dB per 
A / D bit in the reduction of  roundoff noise-to-signal ratio 
can  be  seen  for  the values of bl between 4-6. However, 
the reduction in the roundoff noise-to-signal ratio is dif- 
ferent for cases bl = 6 ,  through 9. While  the reduction in 
the roundoff noise-to-signal ratio between bl = 6 and bl 
= 7 is about 2.6 dB, the reduction in the roundoff noise- 
to-signal ratio  between bl = 7 and bl = 8 is  about 1.9 
dB.  The reduction in the roundoff noise-to-signal ratio be- 
tween bl = 8 and bl = 9 is  only 0.9 dB.  The  amount of 
the reduction in V per bit decreases as  the number of the 
A I D  bits ( bl ) increases. The roundoff noise generated 
by the A / D  conversion  dominates V for small bl.  As the 
number of A / D bits increases, the A / D noise decreases 
until it no longer dominates V. 
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TABLE I11 
ANALYTICAL RESULTS FOR Nps = 4, b ,  = b = 7, AND VARIOUS VALUES OF 

1 AND Urnin 

Roundoff noise-to-signal ratio V (percent) 
S N R  (db)  

TABLE IV 
ANALYTICAL RESULTS FOR 1 = 2, amin = 6, Nps = 4, b = 14 - bl,  AND 

VARIOUS VALUES OF b, 

Roundoff noise-to-signal ratio V (percent) 
SNR I b. 
(db) 
-20 
-15 
-10 
-5 
0 
5 
10 
15 
- 

4 15  16  17 
58.99 I 28.82 I 14.68 1 8.041 

~. 

57.09 

0.463  0.922 
0.876  1.748 
1.816 3.650 
4.337 8.793 
11.18  22.79 
22.47  45.94 
27.90 14.21 

11.45 
5.699 
2.215 
0.929 
0.449 
0.238 

7.784 
6.272 
3.122 
1.214 
0.510 
0.248 
0.132 

VI. DISCUSSION AND CONCLUSIONS 

In  this  paper, we have presented a roundoff noise anal- 
ysis for DSPP’s using Welch’s power spectrum estima- 
tion based on reasonable assumptions for  the signal and 
quantization error models. Overilow is assumed to be 
negligible in our  analysis. Instead of providing an  ex- 
tremely complicated equation for computing the roundoff 
noise-to-signal ratio V in the measurement of signal power 
PR, we have derived a set of equations that can be used 
to compute I/. 

As mentioned in Section 11, the practical implementa- 
tion of a digital signal processor  is driven not only by the 
roundoff noise level but also by the dynamic range at each 
stage of processing. The digital processor may incur some 
untractable nonlinear effect if overflow occurs.  One can 
compute the mean and variance of the signal at each stage 
to compute the probability of occurrence of overflow. 
Then one can also determine the  dynamic range needed 
in each stage  to make this probability small. To prevent 
overflow, many bits at each stage of processing are pre- 
ferred.  Since  the number of bits at each stage determines 
hardware complexity, discarding some least significant 
bits would make the hardware implementation more fea- 
sible.  However, the value of V depends on  the number of 
bits used in  each  stage. By computing V for a hardware 
design,  one can observe if the performance of this design 
is satisfactory. From the simulation example presented in 
Section V which supports our analytical results, one can 
see that Vis more sensitive to certain parameters than oth- 

ers and that V may be the  same  for  some combinations of 
parameters. The derived results have been used to mini- 
mize the hardware complexity of the DDP for NSCAT, 
which we will report in a separate paper. 

Fixed-point arithmetic is assumed in this paper. The 
results for  the floating-point arithmetic can be similarly 
obtained. We believe that  the roundoff analysis presented 
in this paper will be helpful in designing other digital sig- 
nal processors for estimating signal power. 

APPENDIX A 
COVARIANCES ASSOCIATED WITH ft’( k )  AND f $ i ) (  k )  
In this appendix, we  show that 

and 

G/r(kl, k 2 )  = E [ f ? ’ ( k ~  )fi(r)(k2 I ]  (A21 

where Gir ( k ,  , k2 ) and Gi:( k l  , k2 ) are defined as follows. 
1) Signal-Plus-Noise  Case: 

where 

exp (j27rk2(i - r>  D I M ) .  (A5 1 
2)  Noise-Only  Case: 

exp {j27rkz(i - r )  D I N ) ] .  (A7) 

Proof: 
Case I :  Signal-Plus-Noise  Case: In [ I ] ,  we express 
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qhl f h +dl +d2 Then 

Note that s ( m )  is  the  true input signal. 

Let APPENDIX B 
INTERMEDIATE EQUATIONS IN THE DESIGN  EXAMPLE 

J i ( W )  = 2 Im [ X s i ( W )  + X , , i ( W ) ]  For the design  example described in Section V ,  the fol- 
lowing equations were obtained: 

E [ h 4 ( k ) ]  = E [ h ; ( k ) ]  =. 0, for 2 5 k 5 M - 2, 
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( 6, k = 0; 

\ 0, otherwise, 

E [ h y ) ( k ) ]  = E[h;‘”(k) ]  = 4(0) = 6 2 ,  (B4) 

# ( k )  = # ) ( k )  = 2 4 3 k )  + 44&) # ) ( k ) ,  

(B5) 

cov ( h 6 “ ( k 1 ) ,  hg’(b)J  

= [2-2z+14g)(kl - k2)  + &(k1 - k z ) ]  6 ( i  - r ) .  

(B6) 

without showing tedious mathematical manipulations, we 
simply  show the result for E [ h7 I and  Var [h7 1 as fol- 
lows: 

E [ h , ]  = 2-a[KsNpsks(2-’f23u2 + m6)]  + m7 (B7) 

and 

Var [h7]  = Nps2-21-2af3u2 
r Ks 

- 8$;)(1) + 2 4 ; ) ( 2 ) )  ks 

- ( 18u2 - 8$?)(1) + 4@)(2))] 

+ 2-2aNpsKsks~z + U $  038) 

for  the signal-plus-noise case.  The  computation  for round- 
off noise-to-signal ratio I/ is trivial after E[h7 ] and  Var 
[ h7 ] are obtained. 

Before continuing we  have to determine  the roundoff- 
dependent mi and 0:. Assume that a two’s  complement 
integer representation is used  with bit truncation rather 
than rounding. Furthermore,  assume that ei’s, for i # 2, 
are  uniformly distributed. One  can  show that a truncation 
error e ,  with the uniform distribution, has mean me and 
variance u e. 

2 

-& if t = 1; 

-4, if t 2 3; 

and 

where t is the number of bits truncated. Thus, mi = me 
and a: = a: for i = 1, 6, and 7. The mean  and variance 
of e2 depend  on  the  implementation of FFT. Assume that 
the FFT  is implemented by decimation-in-frequency 
method  with a bit-shifted to the right before FFT butterfly 
calculation. Then m2 = -0.5 and E [ e i  + e;’] = 2.06 
which  are consistent with [7] .  Therefore, 022 = 1.56 and 
u2 [see (U)] is 

2%+‘ 1 
u2 = - - 12 + 1.56. 
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